Skip to main content
Ctrl+K
Hidet Documentation - Home Hidet Documentation - Home

Getting Started

  • Installation
    • Build from source
  • Quick Start

Tutorials

  • Optimize PyTorch Model
  • Optimize ONNX Model

Hidet Script

  • Introduction
  • Examples
    • Hello World!
    • Scalar Addition
    • Vector Addition
    • Kernel Functions
    • Naive Matrix Multiplication
    • More Efficient Matrix Multiplication
  • Reference
    • Type System
    • Expressions
    • Statements
    • Function
    • Module
    • CUDA Specifics
    • CPU Specifics

Developer Guide

  • Add PyTorch Operator Mapping
  • Add New Operator
    • Define Operator Computation
    • Using Rule-based Scheduling
    • Using Template-based Scheduling
  • Add Operator Resolve Rule
  • Add Sub-Graph Rewrite Rule
  • Contributing

Notes

  • Operator Cache
  • Visualize Flow Graph

Reference

  • Python API
    • hidet
    • hidet.option
    • hidet.cuda
    • hidet.Tensor
    • hidet.dtypes
    • hidet.drivers
    • hidet.ops
    • hidet.graph
      • hidet.graph.frontend
        • hidet.graph.frontend.onnx
        • hidet.graph.frontend.torch
      • hidet.graph.transforms
        • Sub-graph Rewrite Pass
        • Resolve Operator Pass
    • hidet.runtime
    • hidet.ffi
    • hidet.utils
    • hidet.testing
  • Index
  • .rst

hidet.graph.frontend

hidet.graph.frontend¶

Submodules

  • hidet.graph.frontend.onnx
    • from_onnx()
  • hidet.graph.frontend.torch
    • from_torch()
    • DynamoConfig
      • DynamoConfig.reset()
      • DynamoConfig.search_space()
      • DynamoConfig.use_tensor_core()
      • DynamoConfig.use_fp16()
      • DynamoConfig.use_fp16_reduction()
      • DynamoConfig.use_attention()
      • DynamoConfig.use_cuda_graph()
      • DynamoConfig.print_input_graph()
      • DynamoConfig.dump_graph_ir()
      • DynamoConfig.correctness_report()
      • DynamoConfig.steal_weights()

previous

hidet.graph

next

hidet.graph.frontend.onnx

By Hidet Team

© Copyright 2025, Hidet Authors.