# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=import-outside-toplevel, useless-parent-delegation, redefined-outer-name, redefined-builtin
# pylint: disable=useless-super-delegation, protected-access
from __future__ import annotations
from typing import Optional, Union, Sequence, Tuple, Dict, Type, Callable
import string
import operator
import numpy as np
from .node import Node
from .type import BaseType, TensorType, DataType, TensorPointerType, PointerType, FuncType, StringType, ArrayType
from .type import tensor_pointer_type, string_type, tensor_type, data_type
PyScalar = Union[bool, int, float, complex, str]
class Expr(Node):
def __bool__(self):
raise TypeError(
"hidet.ir.Expr does not support pythonic logical operations (e.g., and, or, not, if(...)). "
"Please use hidet.ir.if_then_else, hidet.ir.logical_and, hidet.ir.logical_or, hidet.ir.logical_or "
"explicitly."
)
def __call__(self, *args, **kwargs):
if len(kwargs) > 0:
raise ValueError("Keyword arguments are not supported in hidet function calls.")
if isinstance(self, Var) and self.type.is_func_type():
return call(self, args)
else:
raise ValueError("Only function variable can be called.")
def __neg__(self):
return self._unary(Neg, self)
def __add__(self, other):
return self._binary(Add, self, other)
def __radd__(self, other):
return self._binary(Add, other, self)
def __sub__(self, other):
return self._binary(Sub, self, other)
def __rsub__(self, other):
return self._binary(Sub, other, self)
def __mul__(self, other):
return self._binary(Multiply, self, other)
def __rmul__(self, other):
return self._binary(Multiply, other, self)
def __truediv__(self, other):
return self._binary(Div, self, other)
def __rtruediv__(self, other):
return self._binary(Div, other, self)
def __floordiv__(self, other):
return self._binary(Div, self, other)
def __rfloordiv__(self, other):
return self._binary(Div, other, self)
def __mod__(self, other):
return self._binary(Mod, self, other)
def __rmod__(self, other):
return self._binary(Mod, other, self)
def __lt__(self, other):
return self._binary(LessThan, self, other)
def __le__(self, other):
return self._binary(LessEqual, self, other)
def __eq__(self, other):
# In hidet, we override the comparison operators: '<', '<=', '==', '!=', '>', '>=', which will return
# the corresponding comparison expression. For example, `a < b` will return a LessThan expression.
# An error will be raised if the result of the comparison is used in any place to evaluate the value in python:
# `if a < b: ...` will raise an error.
# This is because these comparison operators are used to construct the comparison expression in hidet IR.
# However, there are two exceptions:
# 1. if the comparison result is a constant (e.g., `int32(1) < int32(2)`), the result can be evaluated.
# 2. if it is a `==` comparison, the result can be evaluated in python, and True if the two expressions are
# identical (e.g., `a is b`), False otherwise. We need this feature to use Expr as the keys in dict.
# See `hidet.ir.expr.Constant.__bool__` and `hidet.ir.expr.Equal.__bool__` for the implementation details.
return self._binary(Equal, self, other)
def __ne__(self, other):
return self._binary(NotEqual, self, other)
def __lshift__(self, other):
return self._binary(LeftShift, self, other)
def __rshift__(self, other):
return self._binary(RightShift, self, other)
def __gt__(self, other):
return self._binary(LessThan, other, self)
def __ge__(self, other):
return self._binary(LessEqual, other, self)
def __invert__(self):
return Address(self) # We override the invert operator `~a` as the addressing operator.
def __or__(self, other):
return self._binary(BitwiseOr, self, other)
def __ror__(self, other):
return self._binary(BitwiseOr, other, self)
def __and__(self, other):
return self._binary(BitwiseAnd, self, other)
def __rand__(self, other):
return self._binary(BitwiseAnd, other, self)
def __xor__(self, other):
return self._binary(BitwiseXor, self, other)
def __rxor__(self, other):
return self._binary(BitwiseXor, other, self)
def __getitem__(self, items):
if not isinstance(items, (tuple, list)):
items = [items]
indices = []
starts = []
ends = []
for item in items:
if isinstance(item, slice):
indices.append(None)
starts.append(item.start)
ends.append(item.stop)
assert item.step is None, "do not support step slice"
else:
indices.append(item)
starts.append(None)
ends.append(None)
rank = tensor_rank(self)
if len(items) < rank or any(i is None for i in indices):
while len(indices) < rank:
indices.append(None)
starts.append(None)
ends.append(None)
return tensor_slice(base=self, indices=indices, starts=starts, ends=ends)
else:
return tensor_element(base=self, indices=indices)
def __setitem__(self, key, value):
raise ValueError()
def __str__(self):
from hidet.ir.tools import astext
return str(astext(self))
def __int__(self):
raise TypeError("Cannot convert hidet.ir.Expr to int.")
def __float__(self):
raise TypeError("Cannot convert hidet.ir.Expr to float.")
def __complex__(self):
raise TypeError("Cannot convert hidet.ir.Expr to complex.")
__hash__ = object.__hash__ # use default hash function
def read(self, items, protected=True):
te = self[items]
if not isinstance(te, TensorElement):
raise ValueError('expect element indexing, but got slicing.')
te.protected = protected
return te
def write(self, items, value, protected=True):
from hidet.ir.stmt import BufferStoreStmt
te = self[items]
if not isinstance(te, TensorElement):
raise ValueError('expect element indexing, but got slicing.')
return BufferStoreStmt(self, te.indices, value, protected)
@staticmethod
def _unary(cls, a): # pylint: disable=bad-staticmethod-argument
if not isinstance(a, Expr):
a = convert(a)
if isinstance(a, Constant):
if cls is Neg:
return constant(-a.value, a.type)
elif cls is LogicalNot:
return constant(not a.value, a.type)
elif cls is BitwiseNot:
return constant(~a.value, a.type)
else:
raise ValueError('unknown unary operator {}'.format(cls))
else:
return cls(a)
@staticmethod
def _binary(cls, a: Expr, b: Expr): # pylint: disable=bad-staticmethod-argument
if not isinstance(a, Expr):
a = convert(a)
if not isinstance(b, Expr):
b = convert(b)
if isinstance(a, Constant) and isinstance(b, Constant):
from hidet.ir.dtypes import promote_type
if a.type.is_data_type() and b.type.is_data_type():
value = operator_dict[cls](a.value, b.value)
if cls in [Equal, NotEqual, LessThan, LessEqual, LogicalAnd, LogicalOr]:
return constant(value, const_type='bool')
elif cls in [LeftShift, RightShift]:
return constant(value, a.type)
else:
return constant(value, promote_type(a.type, b.type))
elif a.type.is_pointer() and b.type.is_pointer():
if cls is Sub:
return constant(a.value - b.value, 'uint64')
elif cls in [Equal, NotEqual]:
return constant(operator_dict[cls](a.value, b.value), 'bool')
else:
raise ValueError('unknown binary operator {}'.format(cls))
elif a.type.is_pointer() and b.type.is_data_type():
return constant(a.value + b.value, a.type)
elif a.type.is_data_type() and b.type.is_pointer():
return constant(a.value + b.value, b.type)
elif a.type.is_string_type() and b.type.is_string_type():
if cls is Add:
return constant(a.value + b.value, a.type)
elif cls in [Equal, NotEqual]:
return constant(operator_dict[cls](a.value, b.value), 'bool')
else:
raise ValueError('unknown binary operator {}'.format(cls))
else:
raise ValueError('unknown binary operator {}'.format(cls))
elif isinstance(b, Constant) and b.type.is_data_type():
from hidet.ir.dtypes import promote_type
from hidet.ir.tools import infer_type
if b == 0:
if cls in [Add, Sub, BitwiseXor, BitwiseOr]:
return a
elif cls is Multiply:
return promote_type(infer_type(a), b.type)(0)
elif b == 1 and cls in [Multiply, Div]:
return a
elif isinstance(a, Constant):
from hidet.ir.dtypes import promote_type
from hidet.ir.tools import infer_type
if a == 0:
if cls in [Add, BitwiseXor, BitwiseOr]:
return b
elif cls is Multiply:
return promote_type(infer_type(b), a.type)(0)
elif a == 1 and cls is Multiply:
return b
elif a is b and isinstance(a, Var) and cls == LessThan:
return constant(False, 'bool')
return cls(a, b)
class BinaryExpr(Expr):
def __init__(self, a: Expr, b: Expr):
self.a: Expr = a
self.b: Expr = b
assert isinstance(a, Expr)
assert isinstance(b, Expr)
class UnaryExpr(Expr):
def __init__(self, a: Expr):
self.a: Expr = convert(a)
assert isinstance(a, Expr)
class Condition(Expr):
pass
class LessThan(Condition, BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class LessEqual(Condition, BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class Equal(Condition, BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
def __bool__(self):
r = object.__eq__(self.a, self.b)
if r is NotImplemented:
return False
else:
return True
class NotEqual(Condition, BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class LogicalAnd(Condition, BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class LogicalOr(Condition, BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class LogicalNot(Condition, UnaryExpr):
def __init__(self, a):
super().__init__(a)
class Neg(UnaryExpr):
def __init__(self, a):
super().__init__(a)
class Add(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class Sub(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class Multiply(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class Div(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class FloorDiv(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
raise ValueError('FloorDiv is not supported in hidet by design from now on.')
class Mod(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class BitwiseNot(UnaryExpr):
def __init__(self, a):
super().__init__(a)
class BitwiseAnd(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class BitwiseOr(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class BitwiseXor(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class LeftShift(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class RightShift(BinaryExpr):
def __init__(self, a, b):
super().__init__(a, b)
class TensorElement(Expr):
def __init__(self, base, indices, protected=False):
self.base: Expr = base
self.indices: Tuple[Expr, ...] = indices
self.protected: bool = protected
assert isinstance(base, Expr) and isinstance(indices, tuple)
for idx in indices:
assert isinstance(idx, Expr)
class TensorSlice(Expr):
def __init__(self, base, indices, starts, ends):
# a[3, 4:, :5, :] will be represented by
# base: a
# indices: [3, None, None, None]
# starts: [None, 4, None, None]
# ends: [None, None, 5, None]
self.base: Expr = base
self.indices: Tuple[Optional[Expr], ...] = indices
self.starts: Tuple[Optional[Expr], ...] = starts
self.ends: Tuple[Optional[Expr], ...] = ends
assert isinstance(indices, tuple) and isinstance(starts, tuple) and isinstance(ends, tuple)
for idx in indices:
assert idx is None or isinstance(idx, Expr)
for start in starts:
assert start is None or isinstance(start, Expr)
for end in ends:
assert end is None or isinstance(end, Expr)
class Call(Expr):
def __init__(self, func_var, args):
self.func_var: Var = func_var
self.args: Tuple[Expr, ...] = args
assert isinstance(func_var, Var) and isinstance(args, tuple)
for arg in args:
assert isinstance(arg, Expr)
class Let(Expr):
def __init__(self, var, value, body):
self.var: Var = var
self.value: Expr = value
self.body: Expr = body
assert isinstance(var, Var) and isinstance(value, Expr) and isinstance(body, Expr)
class Cast(Expr):
def __init__(self, expr, target_type: BaseType):
self.expr: Expr = expr
self.target_type: BaseType = target_type
assert isinstance(target_type, BaseType)
class Constant(Expr):
# reuse commonly-used constant objects
_constant_pool: Dict[Tuple[Union[int, float, bool], str], Constant] = {}
def __init__(
self,
value: Union[np.ndarray, float, int, complex, str],
const_type: Union[DataType, StringType, TensorType, PointerType],
):
self.value: Union[np.ndarray, float, int, complex, str] = value
self.type: Union[DataType, StringType, TensorType, PointerType] = const_type
def is_scalar(self) -> bool:
return isinstance(self.type, DataType)
def is_tensor(self) -> bool:
return isinstance(self.type, TensorType)
def is_string(self) -> bool:
return isinstance(self.type, StringType)
def __int__(self):
return int(self.value)
def __float__(self):
return float(self.value)
def __bool__(self):
return bool(self.value)
def __complex__(self):
return complex(self.value)
def array(self) -> np.ndarray:
return self.value
[docs]class IfThenElse(Expr):
"""
The if-then-else expression.
Parameters
----------
cond: Expr
The condition of the if-then-else expression.
then_expr: Expr
The expression to be evaluated if the condition is true.
else_expr: Expr
The expression to be evaluated if the condition is false.
"""
def __init__(self, cond: Expr, then_expr: Expr, else_expr: Expr):
self.cond: Expr = cond
self.then_expr: Expr = then_expr
self.else_expr: Expr = else_expr
assert isinstance(cond, Expr) and isinstance(then_expr, Expr) and isinstance(else_expr, Expr)
class Dereference(Expr):
def __init__(self, expr: Expr):
self.expr: Expr = expr
assert isinstance(expr, Expr)
class Address(Expr):
def __init__(self, expr: Expr):
self.expr: Expr = expr
assert isinstance(expr, Expr)
class Reference(Expr):
def __init__(self, expr: Expr):
self.expr: Expr = expr
assert isinstance(expr, Expr)
class Var(Expr):
id_clock = 0
def __init__(self, hint: Optional[str], type: BaseType, name: Optional[str] = None):
"""
A variable may have a hint, name, and id.
Hint is used to determine the name in codegen. Different vars may have the
same hint. If two vars have the same hint such as 'x', the final name would be like 'x1', 'x2'.
OUTDATED:
Name is the determined name in the final code. Used by primitive variables such as 'threadIdx.x'. No variable
should have a same name as primitive objects (including primitive variables and primitive functions).
ID is used to track the allocation of Var object in python, which is only used to help us to distinguish
different Var in python debugger.
"""
self.hint: Optional[str] = hint
self.name: Optional[str] = name
self.type: Union[BaseType, TensorType, TensorPointerType, FuncType] = type
self.id: int = self.new_id()
@staticmethod
def new_id():
Var.id_clock += 1
return Var.id_clock
@staticmethod
def reset_id_counter():
Var.id_clock = 0
class SymbolVar(Var):
name2symbol: Dict[str, SymbolVar] = {}
def __init__(self, name: str, dtype: DataType):
super().__init__(hint=None, type=dtype, name=name)
# the following are used as type hints
# if a primitive function expect an int8 expression, we should use ExprInt8 instead of Expr
# to explicit tell the reader that this function expect an int8 expression
# but this is not enforced by the type system of python
# ExprInt8 should be read as "expression with int8 type"
# Usage example:
#
# def cuda_i64_to_f16(a: ExprInt64) -> ExprFloat16:
# ...
# Above function expects an int64 expression and returns a float16 value.
ExprInt8 = ExprInt16 = ExprInt32 = ExprInt64 = Expr
ExprUInt8 = ExprUInt16 = ExprUInt32 = ExprUInt64 = Expr
ExprFloat16 = ExprFloat32 = ExprFloat64 = ExprBFloat16 = ExprTFloat32 = Expr
Int = Union[int, Expr]
"""
The following are the mapping from hidet expression class to corresponding python operator.
Used by compilation-time constant folding.
"""
operator_dict: Dict[Type[Expr], Callable] = {
# unary arithmetic
Neg: operator.neg,
LogicalNot: operator.not_,
BitwiseNot: operator.invert,
# binary arithmetic
Add: operator.add,
Sub: operator.sub,
Multiply: operator.mul,
Div: lambda a, b: a // b if isinstance(a, int) and isinstance(b, int) else a / b,
Mod: operator.mod,
BitwiseOr: operator.or_,
BitwiseAnd: operator.and_,
BitwiseXor: operator.xor,
Equal: operator.eq,
NotEqual: operator.ne,
LessThan: operator.lt,
LessEqual: operator.le,
LogicalAnd: lambda a, b: a and b,
LogicalOr: lambda a, b: a or b,
LeftShift: operator.lshift,
RightShift: operator.rshift,
}
def convert(
obj: Optional[Union[Expr, PyScalar, tuple, Sequence]], dtype: Optional[Union[str, DataType]] = None
) -> Optional[Union[Expr, tuple]]:
if isinstance(obj, Expr):
return obj
if dtype is not None:
if isinstance(obj, (bool, int, float)):
return constant(obj, dtype)
else:
raise ValueError('Can not convert {} to {}.'.format(obj, dtype))
if isinstance(obj, bool):
return constant(obj, data_type('bool'))
elif isinstance(obj, int):
return constant(obj, data_type('int32'))
elif isinstance(obj, float):
return constant(obj, data_type('float32'))
elif isinstance(obj, str):
return constant(obj, string_type())
elif isinstance(obj, (tuple, list)):
return tuple(convert(v) for v in obj)
elif obj is None:
return None
else:
raise NotImplementedError(type(obj))
def var(hint: str = None, dtype='int32'):
if isinstance(hint, str):
assert set(hint) <= set(string.ascii_letters + '_.' + string.digits)
if isinstance(dtype, str):
dtype = data_type(dtype)
return Var(hint, dtype)
def scalar_var(hint: str, dtype: Union[str, DataType] = 'float32') -> Var:
dtype = dtype if isinstance(dtype, DataType) else data_type(dtype)
return Var(hint, dtype)
def tensor_var(hint: str, shape=None, dtype: Union[str, DataType] = 'float32', layout=None) -> Var:
return Var(hint, tensor_type(dtype, shape, layout))
def is_one(v: Expr) -> bool:
return isinstance(v, Constant) and v.value == 1
def is_zero(v: Expr) -> bool:
return isinstance(v, Constant) and v.value == 0
def is_true(v: Union[Expr, bool]) -> bool:
if isinstance(v, (Constant, bool)):
return bool(v) is True
return False
def is_false(v: Union[Expr, bool]) -> bool:
if isinstance(v, (Constant, bool)):
return bool(v) is False
return False
[docs]def if_then_else(
cond: Union[Expr, PyScalar], then_expr: Union[Expr, PyScalar], else_expr: Union[Expr, PyScalar]
) -> Expr:
"""
Create an if-then-else expression.
Parameters
----------
cond: Expr or PyScalar
The condition of the if-then-else expression.
then_expr: Expr or PyScalar
The expression to be evaluated if the condition is true.
else_expr: Expr or PyScalar
The expression to be evaluated if the condition is false.
Returns
-------
ret: Expr
The if-then-else expression.
"""
cond = convert(cond)
then_expr = convert(then_expr)
else_expr = convert(else_expr)
if is_constant(cond):
if bool(cond):
return then_expr
else:
return else_expr
else:
return IfThenElse(cond, then_expr, else_expr)
def tensor_rank(v: Expr) -> int:
from hidet.ir.compute import TensorNode
if isinstance(v, Var):
if isinstance(v.type, TensorType):
return len(v.type.shape)
elif isinstance(v.type, TensorPointerType):
return len(v.type.tensor_type.shape)
elif isinstance(v.type, PointerType):
return 1
elif isinstance(v.type, ArrayType):
return 1
else:
raise ValueError(v)
elif isinstance(v, TensorSlice):
return sum(1 if i is None else 0 for i in v.indices)
elif isinstance(v, TensorNode):
return len(v.type.shape)
elif isinstance(v, Constant) and isinstance(v.type, TensorType):
return len(v.type.shape)
elif isinstance(v, Cast) and isinstance(v.target_type, PointerType):
return 1
else:
raise ValueError('Can not infer the tensor rank of "{}"'.format(v))
[docs]def tensor_slice(
base: Expr, indices: Sequence[Optional[Int]], starts: Sequence[Optional[Int]], ends: Sequence[Optional[Int]]
) -> TensorSlice:
"""
Create a tensor slice expression.
Parameters
----------
base: Expr
The base tensor expression.
indices: Sequence[Optional[Int]]
The indices of the tensor slice.
starts: Sequence[Optional[Int]]
The start indices of the tensor slice.
ends: Sequence[Optional[Int]]
The end indices of the tensor slice.
Returns
-------
ret: TensorSlice
The tensor slice expression.
"""
if len(indices) != len(starts) or len(indices) != len(ends):
raise ValueError('The length of indices, starts and ends should be the same.')
indices = tuple(convert(i) for i in indices)
starts = tuple(convert(i) for i in starts)
ends = tuple(convert(i) for i in ends)
return TensorSlice(base, indices, starts, ends)
def tensor_element(base: Expr, indices: Sequence[Int], protected=False):
indices = tuple(convert(i) for i in indices)
return TensorElement(base, indices, protected)
def _chain_binary_op(op: Type[BinaryExpr], operands, default):
# pylint: disable=protected-access
if len(operands) == 0:
return convert(default)
elif len(operands) == 1:
return convert(operands[0])
else:
a = _chain_binary_op(op, operands[:-1], default)
b = convert(operands[-1])
return Expr._binary(op, a, b)
def logical_and(*args: Union[Expr, bool]) -> LogicalAnd:
return _chain_binary_op(LogicalAnd, args, True)
def logical_or(*args: Union[Expr, bool]) -> LogicalOr:
return _chain_binary_op(LogicalOr, args, False)
def logical_not(a: Union[Expr, PyScalar]):
# pylint: disable=protected-access
a = convert(a)
return Expr._unary(LogicalNot, a)
def bitwise_not(a: Union[Expr, PyScalar]):
a = convert(a)
return Expr._unary(BitwiseNot, a)
def equal(a: Union[Expr, PyScalar], b: Union[Expr, PyScalar]):
a = convert(a)
b = convert(b)
return a == b
def less_than(a: Union[Expr, PyScalar], b: Union[Expr, PyScalar]):
a = convert(a)
b = convert(b)
return a < b
def less_equal(a: Union[Expr, PyScalar], b: Union[Expr, PyScalar]):
a = convert(a)
b = convert(b)
return a <= b
def not_equal(a: Union[Expr, PyScalar], b: Union[Expr, PyScalar]):
a = convert(a)
b = convert(b)
return a != b
def left_shift(a: Union[Expr, int], b: Union[Expr, int]) -> LeftShift:
a = convert(a)
b = convert(b)
return a << b
def right_shift(a: Union[Expr, int], b: Union[Expr, int]) -> RightShift:
a = convert(a)
b = convert(b)
return a >> b
def bitwise_and(*args: Union[Expr, int]) -> BitwiseAnd:
return _chain_binary_op(BitwiseAnd, args, -1)
def bitwise_or(*args: Union[Expr, int]) -> BitwiseOr:
return _chain_binary_op(BitwiseOr, args, 0)
def bitwise_xor(*args: Union[Expr, int]) -> BitwiseXor:
return _chain_binary_op(BitwiseXor, args, 0)
def cast(v: Union[Expr, int, bool, float], dtype: Union[str, DataType, BaseType]):
if isinstance(v, (bool, int, float)):
v = convert(v)
if not isinstance(v, Expr):
raise ValueError('Expect an expression, got {}'.format(type(v).__name__))
if isinstance(dtype, str):
dtype = data_type(dtype)
if isinstance(v, Constant) and v.is_scalar():
if dtype.is_vector():
raise ValueError('Can not cast a scalar {} to a vector type {}.'.format(v, dtype))
return constant(v.value, dtype)
elif isinstance(v, Var) and v.type.is_data_type() and dtype.is_data_type() and v.type == dtype:
return v
else:
return Cast(v, dtype)
def call(func: Var, args: Sequence[Union[Expr, PyScalar]]) -> Call:
args = tuple(convert(a) for a in args)
return Call(func, args)
def const_tensor(value: np.ndarray) -> Constant:
from hidet.ir.utils.type_utils import from_numpy_dtype
return constant(value=value, const_type=tensor_type(dtype=from_numpy_dtype(value.dtype), shape=list(value.shape)))
def tensor_pointer_var(hint: str, shape=None, dtype: Union[str, DataType] = 'float32', layout=None):
return Var(hint, tensor_pointer_type(dtype=dtype, shape=shape, layout=layout))
def view(ptr: Expr, tp: TensorType) -> Expr:
if not isinstance(tp, TensorType):
raise ValueError('Expect a tensor type, got {}'.format(type(tp).__name__))
return cast(ptr, TensorPointerType.from_tensor_type(tp))
def address(v: Expr) -> Expr:
return Address(v)
def deref(v: Expr) -> Expr:
return Dereference(v)
def is_constant(e: Union[Expr, PyScalar], *other: Union[Expr, PyScalar]) -> bool:
if isinstance(e, Expr) and not isinstance(e, Constant):
return False
if len(other) > 0:
return is_constant(*other)
return True
def constant(value, const_type: Union[str, BaseType]) -> Constant:
from hidet.ir.dtypes import boolean
if const_type and isinstance(const_type, str):
const_type = data_type(const_type)
# normalize value
if isinstance(const_type, DataType):
if const_type.is_complex():
value = complex(value)
elif const_type.is_float():
value = float(value)
elif const_type.is_integer():
if const_type == boolean:
value = bool(value)
else:
value = int(value)
elif const_type.is_vector():
value = tuple(value)
else:
raise ValueError(f"Invalid data const_type {const_type}")
elif isinstance(const_type, TensorType):
value = np.array(value)
elif isinstance(const_type, PointerType):
value = int(value)
elif isinstance(const_type, StringType):
value = str(value)
else:
raise ValueError(f"Invalid const_type {const_type}")
if const_type.is_data_type() and (
(isinstance(value, int) and -128 <= value <= 128) or (isinstance(value, float) and value in [-1.0, 0.0, 1.0])
):
# pylint: disable=protected-access
if (value, const_type.name) not in Constant._constant_pool:
Constant._constant_pool[(value, const_type.name)] = Constant(value, const_type)
return Constant._constant_pool[(value, const_type.name)]
else:
return Constant(value, const_type)
def symbol_var(name: str, dtype='int32') -> SymbolVar:
dtype = data_type(dtype)
if name not in SymbolVar.name2symbol:
if not name.isidentifier():
raise ValueError('Invalid symbol name "{}", must be a valid identifier'.format(name))
SymbolVar.name2symbol[name] = SymbolVar(name, dtype)
else:
if SymbolVar.name2symbol[name].type != dtype:
raise ValueError(
'SymbolVar "{}" already exists with dtype {}, new dtype is {}'.format(
name, SymbolVar.name2symbol[name].type, dtype
)
)
return SymbolVar.name2symbol[name]